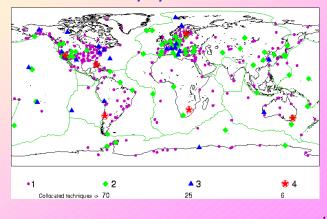


Plan 1- Contexte des traitements laser § Systèmes de référence terrestres 2- Position du problème § Erreurs d'orbite résiduelles § Effet de moyenne par moindres carrés § Biais en distance 3- Méthodes employées et résultats § Séries temporelles de positions § Modèles alternatifs pour les positions § Gestion des biais en distance

Plan

- 1- Contexte des traitements laser
 - § Systèmes de référence terrestres
- 2- Position du problème
 - § Erreurs d'orbite résiduelles
 - § Effet de moyenne par moindres carrés
 - § Biais en distance
- 3- Méthodes employées et résultats
 - § Séries temporelles de positions
 - **§** Modèles alternatifs pour les positions
 - § Gestion des biais en distance

Colloque G2


18 novembre 2004

Systèmes de référence terrestres

1/3

Observations géodésiques => nécessité d'une référence Repère de Référence Terrestre International

Jeu de positions/vitesses de stations terrestres à une époque donnée

Colloque G2

18 novembre 2004

Systèmes de référence terrestres

2/3

Jeux de coordonnées de stations terrestres de techniques géodésiques (SLR, VLBI, GPS, DORIS et LLR) « combinés » entre eux

Laser donne l'origine et l'échelle

Technique	Nombre de solutions	+ petit RMS 3D positions	+ grand RMS 3D positions	+ petit RMS 3D vitesses	+ grand RMS 3D vitesses
VLBI	3	2 mm	3 mm	1 mm/an	1 mm/an
LLR	1	50 mm	50 mm	5 mm/an	5 mm/an
SLR	7	2 mm	14 mm	1 mm/an	5 mm/an
GPS	6	2 mm	5 mm	1 mm/an	2 mm/an
DORIS	2	25 mm	30 mm	4 mm/an	5 mm/an

Qualité des techniques pour l'ITRF2000

Laser contributeur de qualité!

Colloque G2

18 novembre 2004

Systèmes de référence terrestres

3/3

Qualité des techniques géodésiques (exactitude, précision et résolution temporelle)

=> Passage à des séries temporelles

Avantages

- Meilleure mise en évidence des phénomènes physiques
- Bonne opportunité pour déterminer ensemble EOP+TRF

Références :

Altamimi, Z., Sillard, P. et Boucher, C. 2002, Journal of Geophysical Research, 107, B10,10.1029/2001JB000561 http://lareg.ensg.ign.fr/ITRF/

Colloque G2

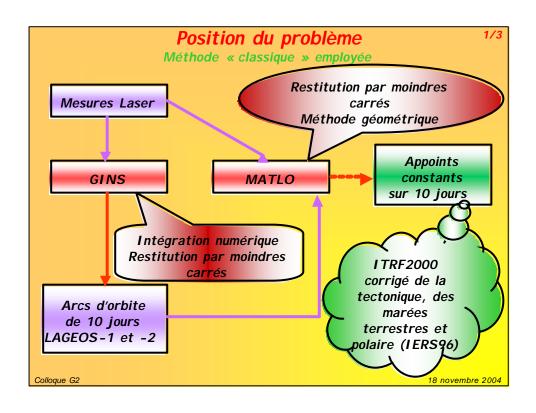
18 novembre 2004

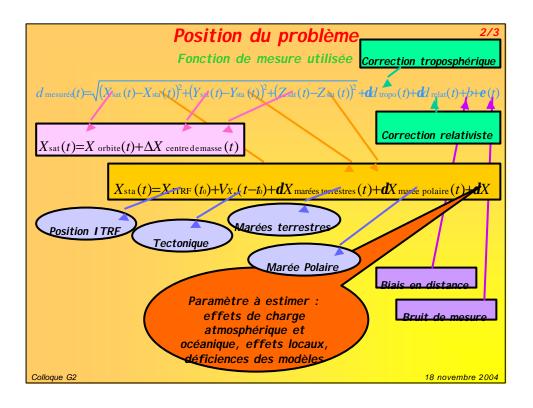
1/1

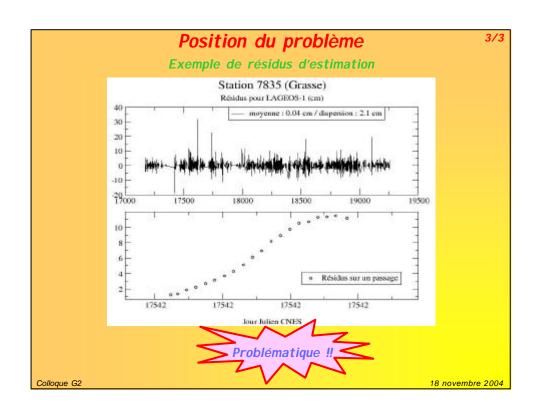
Contexte des traitements laser

Buts des traitements

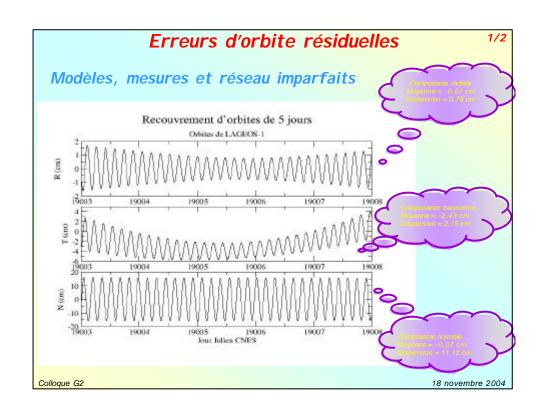
- (i) Séries temporelles de positions de stations et d'EOP pour les systèmes de référence (produits vers l'ILRS et l'IERS)
- (ii) Étude du système de référence sous-jacent aux séries temporelles (définition, stabilité dans le temps)
- (iii) Étude des signaux mis en évidence dans les séries temporelles de Paramètres de Rotation de la Terre (EOP)
- (iv) Études géodynamiques (mise en évidence des effets de charge, estimation de paramètres caractéristiques des modèles, ...)

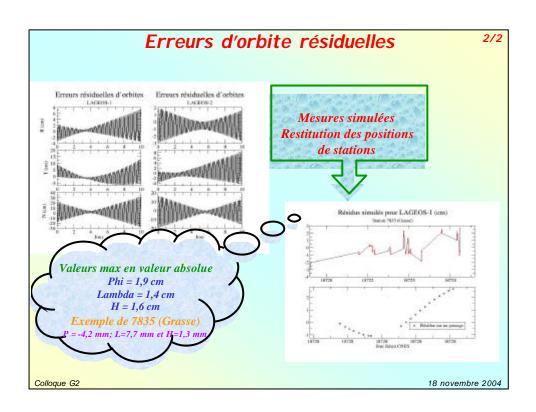

Colloque G2

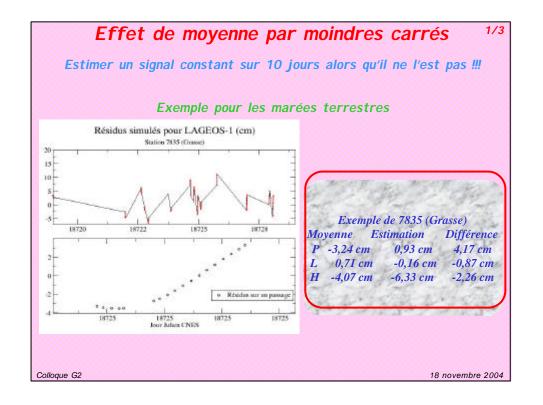

Plan

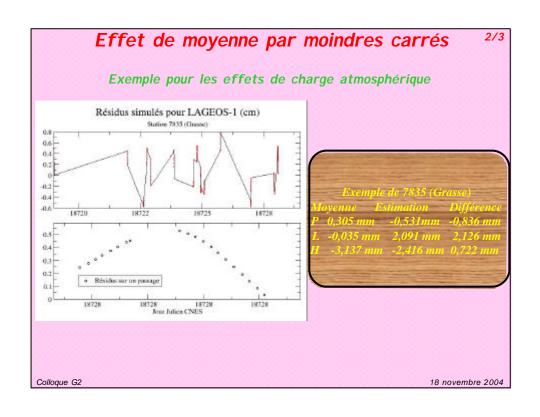


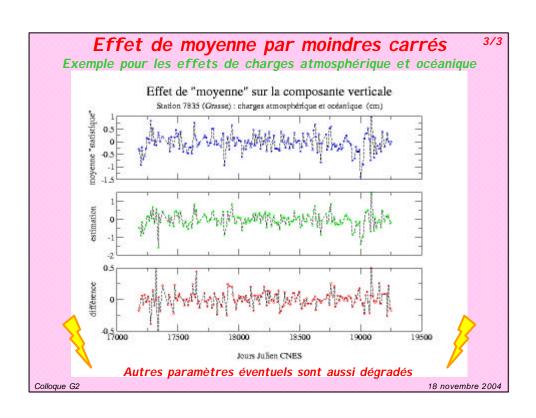
- 1 Contexte des traitements laser
 - § Systèmes de référence terrestres
- 2 Position du problème
 - § Erreurs d'orbite résiduelles
 - § Effet de moyenne par moindres carrés
 - § Biais en distance
- 3- Méthodes employées et résultats
 - § Séries temporelles de positions
 - § Modèles alternatifs pour les positions
 - § Gestion des biais en distance

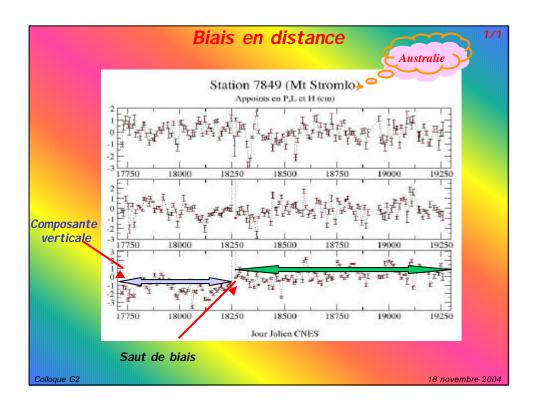

Colloque G2 18 novembre 2004










Plan 1- Contexte des traitements laser § Systèmes de référence terrestres § Paramètres de Rotation de la Terre 2- Position du problème § Erreurs d'orbite résiduelles § Effet de moyenne par moindres carrés § Biais en distance 3- Méthodes employées et résultats § Séries temporelles de positions § Modèles alternatifs pour les positions § Gestion des biais en distance

Plan 1- Contexte des traitements laser § Systèmes de référence terrestres § Paramètres de Rotation de la Terre 2- Position du problème § Erreurs d'orbite résiduelles § Effet de moyenne par moindres carrés § Biais en distance 3- Méthodes employées et résultats § Séries temporelles de positions § Modèles alternatifs pour les positions § Gestion des biais en distance

Plan

1 - Contexte des traitements laser

- § Systèmes de référence terrestres
- § Paramètres de Rotation de la Terre

2- Position du problème

- § Erreurs d'orbite résiduelles
- § Effet de moyenne par moindres carrés
- § Biais en distance

3- Méthodes employées et résultats

- § Séries temporelles de positions
- § Modèles alternatifs pour les positions
- § Gestion des biais en distance

Colloque G2

18 novembre 2004

1/3

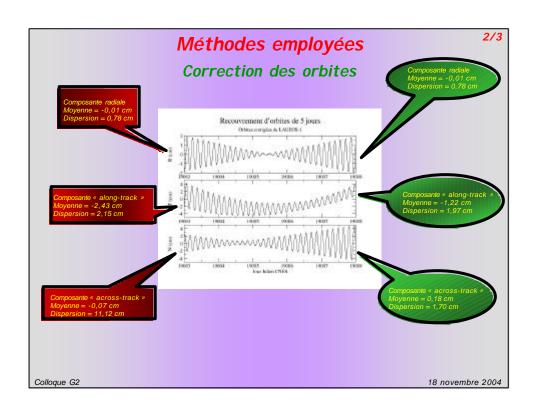
Méthodes employées Erreurs d'orbite résiduelles

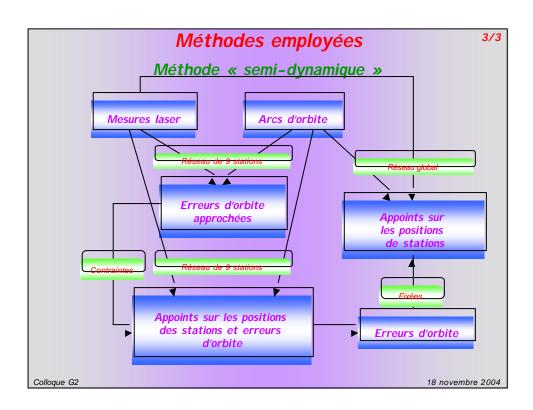
Orbites corrigées des erreurs résiduelles

Termes empiriques de Hill (termes à la période orbitale, termes de Poisson + polynôme du 2nd degré)

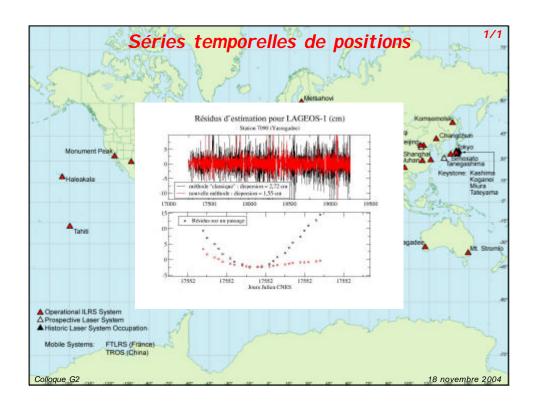
Correction selon les trois composantes (R, T et N)

Modèle sur la position des stations

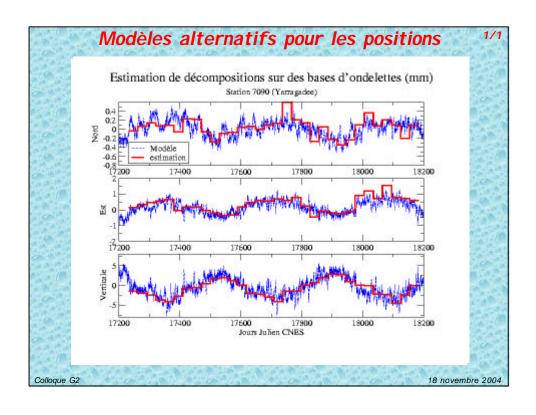

Modèle alternatif pour les positions de stations Série périodique ou décomposition sur une base d'ondelettes


Effet des biais résiduels

Décorrélation avec la composante verticale Décorrélation temporelle


Colloque G2

novembre 2004



Plan 1- Contexte des traitements laser § Systèmes de référence terrestres § Paramètres de Rotation de la Terre 2- Position du problème § Erreurs d'orbite résiduelles § Effet de moyenne par moindres carrés § Biais en distance 3- Méthodes employées et résultats § Séries temporelles de positions § Modèles alternatifs pour les positions § Gestion des biais en distance

Plan 1- Contexte des traitements laser § Systèmes de référence terrestres § Paramètres de Rotation de la Terre 2- Position du problème § Erreurs d'orbite résiduelles § Effet de moyenne par moindres carrés § Biais en distance 3- Méthodes employées et résultats § Séries temporelles de positions § Modèles alternatifs pour les positions § Paramètres de Rotation de la Terre Colloque G2

Plan

- 1- Contexte des traitements laser
 - § Systèmes de référence terrestres
 - § Paramètres de Rotation de la Terre
- 2- Position du problème
 - § Erreurs d'orbite résiduelles
 - § Effet de moyenne par moindres carrés
 - § Biais en distance
- 3- Méthodes employées et résultats
 - § Séries temporelles de positions
 - § Modèles alternatifs pour les positions
 - § Gestion des biais en distance

Colloque G2

18 novembre 2004

Gestion des biais en distance Projet Européen Gavdos

1/2

Expérience d'étalonnage altimétrique Positionnement précis et exact de la SLUM

Max corr (dh/biais) =0,93

Solution globale pour station + 4 biais

```
df = -0.59 \text{ cm} \pm 0.10 \text{ cm}
```

 $d? = 0.25 \text{ cm} \pm 0.10 \text{ cm}$

 $dh = 0.03 cm \pm 0.30 cm$

Biais LA1 = -1,97 cm \pm 0,43 cm

LA2 = -2,06 cm $\pm 0,32 \text{ cm}$

 $STA = -2,24 \text{ cm} \pm 0,19 \text{ cm}$

 $STE = -2,83 \text{ cm} \pm 0,19 \text{ cm}$

Gestion des biais en distance Projet Gavdos

Séries temporelles pour station + solutions globales pour les biais

```
df = -0.58 \text{ cm} \pm 0.35 \text{ cm}
d? = 0.16 \text{ cm} \pm 0.33 \text{ cm}
dh = 1.25 \text{ cm} \pm 0.28 \text{ cm}

Biais LA1 = -0.96 cm \pm 0.21 \text{ cm}
LA2 = -0.97 \text{ cm} \pm 0.18 \text{ cm}
STA = -1.57 \text{ cm} \pm 0.11 \text{ cm}
STE = -2.02 \text{ cm} \pm 0.11 \text{ cm}
```

Décorrélation temporelle accentuée par biais / satellite

Colloque G2 18 novembre 2004

Perspectives

1/1

2/2

- -> Estimation des EOPs dans MATLO
 - + Solutions EOP (1 jour / 6 heures) + TRF (7 jours)
- -> Passage aux conventions IERS 2003
 - + Mise « aux normes »
- -> Mise en place en amont d'un filtrage des mesures par norme L1
 - + Elimination des erreurs de mesure
- -> Solutions « libres » → contraintes minimales
 - + Etude du TRF sous-jacent
- -> Contraintes de continuité
 - + Filtrage haute fréquence pour les EOPs
- -> Interfaçage avec le logiciel de combinaison CATREF (passage en format SINEX)
 - + Etude du TRF sous-jacent
- -> Erreurs d'orbite pour STELLA et STARLETTE
 - + Solutions à 4 satellites

Colloque G2 18 novembre 2004