

Théorème du moment cinétique

$$\frac{d\vec{H}}{dt} + \vec{\omega} \wedge \vec{H} = \vec{L}$$

$$\frac{d\vec{H}^c}{dt} + \vec{\omega} \wedge \vec{H}^c = \vec{C}^c - \vec{\Gamma}^m - \vec{\Gamma}^s$$

$$\frac{d\vec{H}^s}{dt} + \vec{\omega} \wedge \vec{H}^s = \vec{\Gamma}^s + \vec{G}^s + \vec{L}^s$$

- \vec{L} , \vec{L}^s : couples de la force de marée luni-solaire agissant sur le bourrelet équatorial de la Terre et de la graine.
- \vec{C}^c : couple inertiel.
- \vec{G}^s : couple gravitationnel et de pression agissant sur la graine.
- $\vec{\Gamma}^m$, $\vec{\Gamma}^s$: couples de friction visco-magnétique agissant à la CMB et à l'ICB.

Moment cinétique

- de la Terre: $H_i = C_{ij}\omega_j + C_{ij}^c\omega_j^c + C_{ij}^s\omega_j^s$
- du noyau: $H_i^c = \frac{C_{ij}^c}{[\omega_j + \omega_j^c]}$
- de la graine: $H_i^s = C_{ij}^s [\omega_j + \omega_j^s]$

 C_{ij}, C_{ij}^c et C_{ij}^s tenseur d'inertie de la Terre, du noyau fluide et de la graine.

Déformations élastiques:

- au potentiel de marée
- au potentiel de rotation de la Terre, du noyau et de la graine

Formalisme de nombres de Love généralisés

Théorème du moment cinétique

$$\frac{d\vec{H}}{dt} + \vec{\omega} \wedge \vec{H} = \vec{L}$$

$$\frac{d\vec{H}^c}{dt} + \vec{\omega} \wedge \vec{H}^c = \vec{C}^c - \vec{\Gamma}^m - \vec{\Gamma}^s$$

$$\frac{d\vec{H}^s}{dt} + \vec{\omega} \wedge \vec{H}^s = \vec{\Gamma}^s + \vec{G}^s + \vec{L}^s$$

- \vec{L} , \vec{L}^s : couples de la force de marée luni-solaire agissant sur le bourrelet équatorial de la Terre et de la graine.
- \vec{C}^c : couple inertiel.
- \vec{G}^s : couple gravitationnel et de pression agissant sur la graine.
- $\vec{\Gamma}^m$, $\vec{\Gamma}^s$: couples de friction visco-magnétique agissant à la CMB et à l'ICB.

Couple de marées luni-solaires L'attraction gravitationnelle de la Lune et du Soleil exerce sur la Terre, via les bourrelets équatoriaux, un couple de forces qui tend à faire basculer son axe de rotation et à l'aligner perpendiculairement à l'écliptique. Ce basculement est contrarié par la force centrifuge: c'est la PRECESSION

La variation au cours du temps du moment des forces implique que le mouvement de l'axe de rotation n'est pas uniforme. A l'echelle de quelques années, l'inclinaison de l'axe par rapport à l'écliptique oscille autour d'une valeur moyenne: ce sont les NUTATIONS.

- Nutation de Bradley: liée à l'evolution de l'orbite lunaire (perturbée par le Soleil) autour de la Terre. Période: 18.6 ans. Amplitude $\simeq 9.2s$.
- Nutations annuelles, semi-annuelles ... : liées à la révolution de la Terre autour du Soleil. Amplitudes inférieures à la seconde d'arc.

Potentiel de marée

• Dans un repère qui tourne avec le manteau, le potentiel est presque diurne:

 $V_2 = V_o \ 3\cos\theta\sin\theta\sin[-\lambda_x t + \varphi]$

 $\lambda_x = -\Omega[1+x]$ avec $x \ll 1$; Ω : rotation sidérale. θ, φ : colatitude et longitude • Dans le repère céleste, ces ondes ont une période $\frac{1}{x} = \frac{366.25}{k}$ jours avec k = 1..3 pour les ondes annuelles, semi-annuelles ...

• Force de marée:
$$\vec{F} = \rho \vec{\nabla} V_2$$

• Moment des forces: $\vec{L} = \int_{\text{Terre}} \vec{r} \wedge \rho \vec{\nabla} V_2 \, dv = \frac{3\alpha A}{a^2} V_o \begin{pmatrix} \cos \Omega t (1+x) \\ -\sin \Omega t (1+x) \\ 0 \end{pmatrix}$
• Couple de marée sur la graine: $\vec{L}^s = \frac{3\alpha^s A^s \Delta \rho}{a^2} V_o \begin{pmatrix} \cos \Omega t (1+x) \\ -\sin \Omega t (1+x) \\ 0 \end{pmatrix}$

avec α [α^s] et A [A^s] l'aplatissement dynamique et le moment d'inertie de la Terre [de la graine]. $\Delta \rho$: saut de densité à l'ICB.

Théorème du moment cinétique

$$\frac{d\vec{H}}{dt} + \vec{\omega} \wedge \vec{H} = \vec{L}$$

$$\frac{d\vec{H}^c}{dt} + \vec{\omega} \wedge \vec{H}^c = \vec{C}^c - \vec{\Gamma}^m - \vec{\Gamma}^s$$

$$\frac{d\vec{H}^s}{dt} + \vec{\omega} \wedge \vec{H}^s = \vec{\Gamma}^s + \vec{G}^s + \vec{L}^s$$

- \vec{L} , \vec{L}^s : couples de la force de marée luni-solaire agissant sur le bourrelet équatorial de la Terre et de la graine.
- \vec{C}^c : couple inertiel.
- \vec{G}^s : couple gravitationnel et de pression agissant sur la graine.
- $\vec{\Gamma}^m$, $\vec{\Gamma}^s$: couples de friction visco-magnétique agissant à la CMB et à l'ICB.

Couple inertiel sur le noyau

=> diminue le basculement du noyau

- Le moment des forces de pression provient de la rotation en bloc du noyau fluide.
- Le noyau, comme le manteau, est aplati: en tournant, il "bute" sur le manteau, ce qui crée des pressions à la CMB, pressions dont le moment résultant est non nul.

 $ec{C}^c = \left(ec{\omega} + ec{\omega}^c
ight) \wedge ec{H}^c$

• Même type de couple de pression entre le noyau fluide et la graine solide.

Théorème du moment cinétique

$$\frac{d\vec{H}}{dt} + \vec{\omega} \wedge \vec{H} = \vec{L}$$

$$\frac{d\vec{H}^c}{dt} + \vec{\omega} \wedge \vec{H}^c = \vec{C}^c - \vec{\Gamma}^m - \vec{\Gamma}^s$$

$$\frac{d\vec{H}^s}{dt} + \vec{\omega} \wedge \vec{H}^s = \vec{\Gamma}^s + \vec{G}^s + \vec{L}^s$$

- \vec{L} , \vec{L}^s : couples de la force de marée luni-solaire agissant sur le bourrelet équatorial de la Terre et de la graine.
- \vec{C}^c : couple inertiel.
- \vec{G}^s : couple gravitationnel et de pression agissant sur la graine.
- $\vec{\Gamma}^m$, $\vec{\Gamma}^s$: couples de friction visco-magnétique agissant à la CMB et à l'ICB.

Couple gravitationnel sur la graine penchée

Ce couple dépend fortement de la viscosité de la graine

Théorème du moment cinétique

$$\frac{d\vec{H}}{dt} + \vec{\omega} \wedge \vec{H} = \vec{L}$$

$$\frac{d\vec{H}^c}{dt} + \vec{\omega} \wedge \vec{H}^c = \vec{C}^c - \vec{\Gamma}^m - \vec{\Gamma}^s$$

$$\frac{d\vec{H}^s}{dt} + \vec{\omega} \wedge \vec{H}^s = \vec{\Gamma}^s + \vec{G}^s + \vec{L}^s$$

- \vec{L} , \vec{L}^s : couples de la force de marée luni-solaire agissant sur le bourrelet équatorial de la Terre et de la graine.
- \vec{C}^c : couple inertiel.
- \vec{G}^s : couple gravitationnel et de pression agissant sur la graine.
- $\vec{\Gamma}^m$, $\vec{\Gamma}^s$: couples de friction visco-magnétique agissant à la CMB et à l'ICB.

Couples électromagnétiques

Courants induits dans le manteau (\vec{j}_m) et dans la graine (\vec{j}_s) par le champ de vitesse du noyau $(\vec{\omega}^c \wedge \vec{r})$ et de la graine $(\vec{\omega}^s \wedge \vec{r})$.

$$ec{\Gamma}^m = \int \limits_{ ext{manteau}} ec{r} \wedge (ec{j}_m \wedge ec{B}_o) dv;$$

$$ec{\Gamma}^s = \int \limits_{ ext{graine}} ec{r} \wedge (ec{j}_s \wedge ec{B}_o) dv$$

Hypothèses (Buffett, 1992):
1) B_o champ magnétique principal dipolaire;
2) autour du jour ∂B_o/∂t = 0.
3) B_o à l'ICB a le même ordre de grandeur qu' à la CMB.
Résolution de l'équation d'induction + Conditions de continuité en c, b et b+L ⇒ j_m et j_s induits

Couples électromagnétiques

$$\vec{\Gamma}_m^m = A^c \Omega K_m \begin{pmatrix} \omega_1^c - \omega_2^c \\ \omega_2^c + \omega_1^c \\ 0 \end{pmatrix}$$
$$\vec{\Gamma}_m^s = A^s \Omega K_s \begin{pmatrix} \omega_1^c - \omega_1^s + \omega_2^s - \omega_2^c \\ \omega_2^c - \omega_2^s + \omega_1^c - \omega_1^s \\ 0 \end{pmatrix}$$

Constantes de friction magnétique K_m et K_s dépendent:

- du profil de conductivité
- du carré de l'amplitude du champ magnétique dipolaire

Modèle de conductivité: $\sigma_s = \sigma_c = 5 \times 10^5 \ (\Omega.m)^{-1}$

Modèle (a) : Poirier et al., 1998 $\begin{cases}
\sigma_m = 10 \ (\Omega.m)^{-1} \\
L = 2000 \ \text{km} \\
K_m = 2.3 \times 10^{-8} \\
K_s = 6.2 \times 10^{-6}
\end{cases}$ Modèle (b) : Buffett, 1992 $\begin{cases}
\sigma_m = \sigma_c \\
L = 500 \ \text{m} \\
K_m = 2.6 \times 10^{-6} \\
K_s = 6.2 \times 10^{-6}
\end{cases}$

$$K_c = K_m + \frac{A_s}{A_c} K_s$$

Couples visqueux

Contrainte visque use $\underline{\Sigma}$ dans une couche limite proche de la CMB et de l'ICB $\vec{\Gamma}_v^m = \int_{CMB} \vec{r} \wedge \underline{\Sigma} \vec{n} ds; \qquad \vec{\Gamma}_v^s = \int_{ICB} \vec{r} \wedge \underline{\Sigma} \vec{n} ds$

Loper (1975):

$$\vec{\Gamma}_{v}^{m} = A^{c} \Omega \begin{pmatrix} K_{m} \omega_{1}^{c} - K_{m}^{\prime} \omega_{2}^{c} \\ K_{m} \omega_{2}^{c} + K_{m}^{\prime} \omega_{1}^{c} \\ 0 \end{pmatrix}; \quad \vec{\Gamma}_{v}^{s} = A^{s} \Omega \begin{pmatrix} K_{s} (\omega_{1}^{c} - \omega_{1}^{s}) + K_{s}^{\prime} (\omega_{2}^{s} - \omega_{2}^{c}) \\ K_{s} (\omega_{2}^{c} - \omega_{2}^{s}) + K_{s}^{\prime} (\omega_{1}^{c} - \omega_{1}^{s}) \\ 0 \end{pmatrix}$$
avec $K_{m} = 2.6\sqrt{E}$ et $K_{m}^{\prime} = \frac{1}{10}K_{m}$. et $K_{s} = 2.6\sqrt{E} \quad \frac{A^{c}}{A^{s}} \quad (\frac{c}{b})^{4}$ et $K_{s}^{\prime} = \frac{1}{10}K_{s}$.
Pour le noyau $E = 10^{-15}$ (Poirier, 1988). $\Rightarrow K_{m} = 8 \times 10^{-8}$ et $K_{s} = 2 \times 10^{-7}$.

Théorème du moment cinétique

$$\frac{d\vec{H}}{dt} + \vec{\omega} \wedge \vec{H} = \vec{L}$$

$$\frac{d\vec{H}^c}{dt} + \vec{\omega} \wedge \vec{H}^c = \vec{C}^c - \vec{\Gamma}^m - \vec{\Gamma}^s$$

$$\frac{d\vec{H}^s}{dt} + \vec{\omega} \wedge \vec{H}^s = \vec{\Gamma}^s + \vec{G}^s + \vec{L}^s$$

- \vec{L} , \vec{L}^s : couples de la force de marée luni-solaire agissant sur le bourrelet équatorial de la Terre et de la graine.
- \vec{C}^c : couple inertiel.
- \vec{G}^s : couple gravitationnel et de pression agissant sur la graine.
- $\vec{\Gamma}^m$, $\vec{\Gamma}^s$: couples de friction visco-magnétique agissant à la CMB et à l'ICB.

Modes propres de rotation pour une graine élastique Modèle (a) de conductivité: $K_c = 10^{-7}$ et $K_s = 6.4 \times 10^{-6}$

CHANDLER WOBBLE: mouvement de l'axe de rotation terrestre par rapport à un repère lié à la surface de la planète de période 435 jours. INNER-CORE-WOBBLE (ICW): fréquence propre de type 'Chandler' liée au basculement de la graine par rapport au manteau, de période 6.3 ans.

FREE-CORE-NUTATION

(FCN): mode propre de rotation presque diurne lié au noyau: $\lambda_{FCN} = -\Omega \left[1 + \frac{1}{459.8} \right]$ pour PREM avec un facteur de qualité $Q_{FCN} \simeq \frac{A^m}{2K_c A} = 4.2 \times 10^6.$ FREE-INNER-CORE-NUTATION (FICN): mode propre de rotation presque diurne lié à la graine: $\lambda_{FICN} = -\Omega \left[1 - \frac{1}{486.8} \right]$ pour PREM avec un facteur de qualité $Q_{FICN} \simeq \frac{1}{2K_8} = 7.8 \times 10^4$.

Graine viscoélastique

- Modèle de rhéologie pour la graine: corps linéaire de Maxwell
- Les déformations viscoélastiques dependent du temps de relaxation viscoélastique de la graine τ_G • τ_G proportionnel à la
- viscosité de la graine ν_s et à $\frac{1}{\Delta\rho}$ [$\Delta\rho$, le saut de densité à l'ICB].

Viscoelastic relaxation time of the inner core in day

Modes propres de rotation pour une graine viscoélastique Modèle (a) de conductivité: $K_c = 10^{-7} + \frac{A^s}{A} K_s$

CHANDLER WOBBLE:

Période et atténuation peu perturbées par les frictions à la CMB et l'ICB et par la viscosité de la graine INNER-CORE-WOBBLE:

Disparait pour une graine fluide

FREE-CORE-NUTATION:

Période peu perturbée par K_c , K_s et la viscosité de la graine. Atténuation liée à K_c , K_s and ν_s :

FREE-INNER-CORE-NUTATION:

La période spatiale de la FICN varie de 75 jours (graine quasifluide) à quelques milliers de jours (graine élastique avec un fort champ magnétique à l'ICB). Atténuation liée à K_c , K_s et ν_s . Période et atténuation de la FCN Modèle (a) de conductivité: $K_c = 10^{-7}$ et $K_s = 6.4 \times 10^{-6}$

Spatial period of the FCN

Quality factor of the FCN

Modes propres de rotation pour une graine viscoélastique Modèle (a) de conductivité: $K_c = 10^{-7} + \frac{A^s}{A} K_s$

CHANDLER WOBBLE:

Période et atténuation peu perturbées par les frictions à la CMB et l'ICB et par la viscosité de la graine INNER-CORE-WOBBLE:

Disparait pour une graine fluide

FREE-CORE-NUTATION:

Période peu perturbée par K_c , K_s et la viscosité de la graine. Atténuation liée à K_c , K_s and ν_s :

FREE-INNER-CORE-NUTATION:

La période spatiale de la FICN varie de 75 jours (graine quasifluide) à quelques milliers de jours (graine élastique avec un fort champ magnétique à l'ICB). Atténuation liée à K_c , K_s et ν_s .

FICN : Période et atténuation

Potentiel de marée tesséral de degré 2

- Fréquence $\left[-\frac{k}{366.25}\Omega \text{ avec } k = \pm 0, 1, 2, 3\right]$ dans le repère céleste.
- Amplitude [en m^2/s^2] des ondes de marées solaires.

Nutations spatiales

- dans un repère terrestre tournant : $\omega = \omega_o e^{-i\Omega t(1+x)}$
- dans le repère céleste: $\omega' = \omega e^{i\Omega t} = \omega_o e^{-i\Omega xt}$
- Perturbations de l'obliquité ϵ et de la précession Ψ :

$$\dot{\epsilon} + i\sin\epsilon_o \dot{\Psi} = \left(\omega_{o1} + i\omega_{o2}\right) \mathrm{e}^{-i\Omega xt}$$

Variations de l'obliquité et de la longitude ont une fréquence spatiale égale à $-\Omega x$:

$$\delta \epsilon = -\frac{\omega_{o1}}{\Omega x} \sin(-\Omega xt) - \frac{\omega_{o2}}{\Omega x} \cos(-\Omega xt)$$

$$\delta\Psi\sin\epsilon_o = -\frac{\omega_{o2}}{\Omega x}\sin(-\Omega xt) + \frac{\omega_{o1}}{\Omega x}\cos(-\Omega xt)$$

Composante en phase par rapport au potentiel de marée forçant $\left(-\frac{\omega_{o2}}{\Omega x}\right)$ et composante hors-phase $\left(\frac{\omega_{o1}}{\Omega x}\right)$ due à ν_s and K_c , K_s .

Nutation semi-annuelle prograde: P_1

Graine élastique, $K_c = K_s = 0$: $-\frac{\omega_{o2}}{\Omega x} \simeq 549$ mas

Nutation annuelle prograde: S_1 Graine élastique, $K_c = K_s = 0 : -\frac{\omega_{o2}}{\Omega_r} \simeq 26$ mas

Nutation prograde 18,6 ans Graine élastique, $K_c = K_s = 0 : -\frac{\omega_{o2}}{\Omega x} \simeq 1179$ mas

Nutation retrograde 18,6 ans Graine élastique, $K_c = K_s = 0 : -\frac{\omega_{o2}}{\Omega x} \simeq 8031$ mas

CONCLUSION

Non seulement la friction magnétique mais aussi la viscosité de la graine peuvent perturber la FICN et les nutations.

Des observations très précises des composantes *en phase* et *hors phase* peuvent donner des informations sur l'intérieur de la Terre:

- sur le saut de densité à l'ICB
- sur la viscosité effective de la graine
- sur l'amplitude du champ magnétique à l'ICB

Greff-Lefftz, M., Dehant, V. and Legros, H., 2002. Effects of inner core viscosity on gravity changes and spatial nutations induced by luni-solar tides. *Phys. Earth Planet. Int.*, 129, 31-41. Greff-Lefftz, M., Legros, H., Dehant, V., 2000. Influence of the inner core viscosity on the rotational eigenmodes of the Earth.*Phys. Earth Planet. Int.*, 122, vol 3-4, 187-203.