

Odyssey2: A mission toward Neptune and Triton to test gravitation

B. Christophe on behalf of Odyssey2 Team

Journées SF2A Marseille, France 21-25 June 2010

return on innovation

Acknowledgements

To the Odyssey2 scientific mission group:

- S. Reynaud (LKB, France)
- C. Lämmerzahl, H. Selig (ZARM, Bremen, Germany)
- P. Wolf (SYRTE, OBSPM, Paris, France)
- H. Dittus, T. van Zoest (DLR, Institute of Space System, Germany)
- G. Métris (OCA, France)
- F. Sohl (DLR, Institute for Planetary Research, Germany)
- S. Léon-Hirtz, R. Biancale (CNES, France)
- B. Christophe, B. Foulon (ONERA, France)

To:

- E. Hinglais (CNES, France) and PASO team
- J.-M. Courty, B. Lamine (LKB, France)
- B. Lenoir, A. Lévy (ONERA, France)

To CNES for its support to Odyssey 2

ONERA

Outline

- Description of the Odyssey2 mission
 - Scientific objectives
 - Instrumentation
 - Preliminary mission analysis
- The Gravity Advanced Package:
 - a null-bias electrostatic accelerometer
 - MicroSTAR design and performances
 - Principle of the bias rejection
 - Precision on the acceleration measurement

Description of the Odyssey2 mission

return on innovation

Fundamental physics scientific objectives

Objectives	Deep space gravity	
Target precision	Δa < 10 pm/s²	

ESA Fundamental Physics Roadmap draft (01/12/2010):

The development of low bias accelerometers, compatible with 10 pm/s² spacecraft tracking at frequencies down to 10⁻⁷ Hz and below is essential for gravity tests using dedicated or planetary missions, and should be pursued.

Deep Space Gravity

Good agreement of General Relativity with experiments but...

Unification models predict deviations from General Relativity

Importance of testing General Relativity at all possible scales beyond existing tests in the Solar System

Fundamental physics scientific objectives

Objectives	Deep space gravity	PPN parameter γ
Target precision	Δa < 10 pm/s²	Δγ < 10 ⁻⁷

Fundamental physics scientific objectives

NEAR fly-by: $\Delta V = 13.5$ mm/s

Planetary scientific objectives

Study of Neptune and Triton*:

- Density profile and composition of the atmospheres
- Gravitational fields and interior structures
- Imaging and composition of the surfaces
- Measurement of the magnetospheres

* Currently under discussion with the planetary community

Instrumentation

	Fundamental physics	Planetary
Null-bias accelerometer	- Deep-space gravity	AtmosphereGravitational field
Radio-science	- Deep-space gravity - Parameter γ - Fly-by	AtmosphereGravitational field
Laser ranging	- Parameter γ	-
Camera*	-	- Imaging of the surface
Spectrometer*	-	- Composition of the environment
Particles detector*	-	- Composition of the environment
Magnetometer*	-	- Magnetosphere

* Currently under discussion with the planetary community

Context of Odyssey2 mission

- Under a Phase 0 CNES study for the next M
 mission Cosmic Vision Call
 - Launch in 2022
 - 470 million € at completion (without instruments)
- Technical and programmatic issues:
 - Date of launch not optimal
 - Nuclear power \rightarrow US collaboration with Argo ?
 - Duration of the mission
 - Choice of propulsion system

The Gravity Advanced Package: a null-bias electrostatic accelerometer

return on innovation

Subsystems

MicroSTAR:

an electrostatic accelerometer

- Developed by ONERA
- GRACE GOCE heritage

- Bias Rejection System
 - Developed by ZARM
 - Rotating stage

1.1 kg 0.2 W

1 kg

1.4 W

Interface and Control Unit

Developed by ONERA

Total mass = 3 kg Total power = 3 W

> ONERA THE FRENCH AREOSPACE LAS

MicroSTAR flight model design

- The position of the proof mass is controlled via the potential of the electrodes.
- The potentials on the proof mass are controlled by 2 gold wires for miniaturization purpose.

Link between the external non-gravitational acceleration acting on the spacecraft and the electrostatic force :

$$\left(\frac{1}{m_{\mathbf{A}}} + \frac{1}{m_{\mathbf{S}}}\right) \underline{F_{\mathbf{S} \to \mathbf{A}}^{elec}} = \frac{1}{m_{\mathbf{S}}} \underline{F_{ext \to \mathbf{S}}^{NG}} + \underline{A_1} - \underline{A_2} - \underline{A_3}$$

$$\downarrow$$
Fictitious acceleration
$$\underline{A_1} = \underline{\dot{\Omega}_{2/1}} \wedge \underline{SC} + \underline{\Omega_{2/1}} \wedge \left(\underline{\Omega_{2/1}} \wedge \underline{SC}\right)$$

$$\downarrow$$
Accelerometer position
$$Angular velocity of the satellite$$

Link between the external non-gravitational acceleration acting on the spacecraft and the electrostatic force :

Link between the external non-gravitational acceleration acting on the spacecraft and the electrostatic force :

$$\left(\frac{1}{m_{\mathbf{A}}} + \frac{1}{m_{\mathbf{S}}}\right) \underline{F_{\mathbf{S} \to \mathbf{A}}^{elec}} = \frac{1}{m_{\mathbf{S}}} \underline{F_{ext \to \mathbf{S}}^{NG}} + \underline{A_1} - \underline{A_2} - \underline{A_3}$$

Gold wire

$$\underline{A_3} = \left(\frac{1}{m_{\mathbf{A}}} + \frac{1}{m_{\mathbf{S}}}\right) \underline{F_{\mathbf{S} \to \mathbf{A}}^{gold}}$$

Performance of MicroSTAR

$$S_n(f) = 9.3 \times 10^{-24} \frac{1}{f} + 5.9 \times 10^{-19} f^4$$

Bias Rejection Principle

Rotation of the accelerometer of an angle θ :

$$m_{x} = n_{x} + (1 + \delta k_{x}) \left[\mu \left(F_{x}^{NG} \cos(\theta) + F_{y}^{NG} \sin(\theta) \right) + F_{x}^{gold} \right] + b_{x}$$

$$m_{y} = n_{y} + (1 + \delta k_{y}) \left[\mu \left(-F_{x}^{NG} \sin(\theta) + F_{y}^{NG} \cos(\theta) \right) + F_{x}^{gold} \right] + b_{y}$$
Measures Noise Bias:
electronic + gold wire 4N unknowns

Processing of the modulated signal

- Our goal is to know the mean acceleration.
- Bias = $b_0 + K \times Temperature$

$$\mu F_x^{NG} = \begin{bmatrix} 1\\1\\ \vdots\\1\\1 \end{bmatrix} \begin{bmatrix} \overline{a_x} \end{bmatrix} \qquad b_x + F_x^{gold} = \begin{bmatrix} 1 & T[1]\\1 & T[2]\\ \vdots & \vdots\\1 & T[N-1]\\1 & T[N] \end{bmatrix} \begin{bmatrix} \overline{b_x} & db_x \end{bmatrix}$$

Resolution by a least squares approach

Precision of the measurement

$$\sigma_{\overline{a_x}} \approx \sqrt{\int_{\frac{-1}{2\delta t}}^{\frac{1}{2\delta t}} S_n(f) \left| \frac{\mathcal{F}_{\delta t}[s](f)}{\delta t} \right|^2 df}$$

$$s[i] = rac{\cos(heta[i])}{||\cos(heta[i])||}$$

Simulation

- Initial conditions: r = 5 AU, v = 20 km/s_
- Radiation pressure only _
- Perfect measures of the temperature _
- Integration time = 6h, sampling time = 1s_

THE FRENCH AEROSPACE LAS

Precision of the measurement

- Independent of the sampling time for dt in [1;100] s
- Higher modulation frequency gives smaller error
- Coherent with analytic formula

Conclusion

Odyssey2 is a fundamental physics mission with planetary objectives proposed for next Cosmic Vision M3 mission

Main fundamental physics instrument is a null-bias electrostatic accelerometer accurate at 10 pm/s² at low frequency

Planetary objectives under discussion with planetary community