« Analyse à haute fréquence du positionnement GPS de la campagne surcharge Bretagne; comparaisons aux modèles de marées »

<u>S. A. Melachroinos (1), M. Vergnolle (2),</u> M. Llubes (3), R. Biancale (1), F. Perosanz(1), J. Nicolas (4), L. Morel (4), S. Durand (4), F. Masson (5), M.-N. Bouin (6)

(1) GRGS/DTP
(2) LGT
(3) GRGS/LEGOS
(4) ESGT/L2G
(5) IPG/Strasbourg
(6) IGN/LAREG

Introduction

Colloque GDR/G2 à la Rochelle

Caractéristiques des marées

- M2 Principal lunar semidiurnal constituent
- S2 Principal solar semidiurnal constituent
- N2 Larger lunar elliptic semidiurnal constituent
- K1 Lunar diurnal constituent
- M4 Shallow water overtides of principal lunar constituent
- O1 Lunar diurnal constituent
- M6 Shallow water overtides of principal lunar constituent
- MK3 Shallow water terdiurnal
- S4 Shallow water overtides of principal solar constituent
- MN4 Shallow water quarter diurnal constituent
- **NU2** Larger lunar evectional constituent
- S6 Shallow water overtides of principal solar constituent
- MU2 Variational constituent
- 2N2 Lunar elliptical semidiurnal second-order constituent
- OO1 Lunar diurnal
- LAM2 Smaller lunar evectional constituent
 - S1 Solar diurnal constituent

- Smaller lunar elliptic diurnal constituent M1 Smaller lunar elliptic diurnal constituent **J1** Lunar monthly constituent MM Solar semiannual constituent SSA Solar annual constituent SA **MSF** L-unisolar synodic fortnightly constituent MF Lunisolar fortnightly constituent RHO Larger lunar evectional diurnal constituent **Q1** Larger lunar elliptic diurnal constituent **T2** Larger solar elliptic constituent **R2** Smaller solar elliptic constituent 2Q1 Larger elliptic diurnal Solar diurnal constituent **P1** 2SM2 Shallow water semidiurnal constituent L-unar terdiurnal constituent **M3** Smaller lunar elliptic semidiurnal constituent L2 Shallow water terdiurnal constituent 2MK3 L-unisolar semidiurnal constituent **K2**
 - M8 Shallow water eighth diurnal constituent
 - MS4 Shallow water quarter diurnal constituent

La surcharge Océanique (OTL)

La surcharge océanique

Connaissant les fonctions de Green associées à une surcharge ponctuelle unité, l'effet d'une charge répartie à la surface sera obtenu en calculant l'intégrale de convolution de la fonction de Green et de la fonction de répartition de la masse.

 $I(\varphi,\lambda) = \rho_{\omega} \int_{0}^{\pi} d\varphi' \int_{0}^{2\pi} \alpha^{2} G(\lambda,\varphi;\lambda',\varphi') A(\lambda',\varphi') d\lambda' \cos\varphi'$

Nombres LLNs

Modèle de Terre

Grille des marées , **FES2004** – 0.125 x 0.125°; T/P, ERS **TPXO7.0** – 0.25 x 0.25°; Assimilates T/P + Jason, ERS (M2 & O1), TG **CSR4** – 0.5 x 0.5°; T/P **GOT00.2** - 0.5 x 0.5°; T/P, ERS **NAO.99b** - 0.5 x 0.5°; T/P

Décomposées en 2 termes sin et cos Colloque GDR/G2 à la Rochelle

Les observations GPS de la campagne Bretagne

- Y 110 jour des données sur 12 stations temporaires (au dessus du *critère de Rayleigh* pour la séparation des ondes les plus proches)
- Y Réseaux des stations Brotons+RGP+IGS à l'échelle continentale (régional)
- Y Estimation des positions des stations et paramètres troposphériques / hr
- Y Utilisation des logiciels GINS (SM), BERNESE (SD), GIPSY (LM), GAMIT (MN, MV) I

 $T = 1/(\omega_1 - \omega_2)$

Les différences au modèle FES04 et entre logiciels [sol. GINS (SM) – GAMIT (MV)]

Les différences au modèle FES04 et entre logiciels [sol. GINS (SM) – GAMIT (MV)]

Les différences au modèle FES04 et entre logiciels [sol. GINS (SM) – GAMIT (MV)]

Corrélation en Est

Les différences au modèle FES04 et entre logiciels [sol. GINS (SM) – GAMIT (MV)]

Corrélation en Hauteur

Site	FES04/ GINS	FES04 / GMT	GINS / GMT	
BRST	0,85	0,91	0,86	E
CHER	0,73	0,79	0,73	C
соит	0,74	0,83	0,76	C
DIBE	0,85	0,92	0,86	
MANS	0,41	0,55	0,46	Ν
PAIM	0,87	0,92	0,86	I
RENN	-	0,78	-	F
TREV	0,83	0,90	0,82	7
YGEA	0,76	0,89	0,77	١

Site	FES04/ GINS	FES04 / GMT	GINS / GMT
BRST	0,82	0,67	0,65
CHER	0,90	0,80	0,79
СОИТ	0,88	0,81	0,77
DIBE	0,83	0,72	0,69
MANS	0,66	0,53	0,45
PAIM	0,84	0,72	0,70
RENN	-	0,65	-
TREV	0,82	0,69	0,66
YGEA	0,75	0,72	0,60

Corrélation en Nord

Site	GINS	GMT	GINS / GMT
BRST	0,73	0,69	0,71
CHER	0,54	0,62	0,66
соит	0,59	0,65	0,65
DIBE	0,78	0,75	0,79
MANS	0,41	0,48	0,54
PAIM	0,80	0,74	0,77
RENN	-	0,67	-
TREV	0,78	0,76	0,73
YGEA	0,76	0,75	0,73

Colloque GDR/G2 à la Rochelle

U,*1* Z

La correlation tropospherique

 Y Ajustement des amplitudes des fonctions cos et sin avec des fréquences stables pour les ondes K1,O1,S1,N2,M2,S2,K2,SK3,M4

$$\sum_{n=0}^{N} \left[y_n - \sum_{l=1}^{L} \left(A_l \cos\left(2\pi f_l t_n\right) + B_l \sin\left(2\pi f_l t_n\right) \right) \right]^2$$

 Y Comparaisons des amplitudes au long des côtes par rapport au différents modèles de surcharge

Conclusions / Perspectives

- La précision actuelle des obs. GPS nous permet d'analyser les phénomènes de surcharge océanique et valider les modèles actuelles ;
- Y Le temps d'observation de ~110 jours n'est pas suffisant pour la séparation des ondes le plus proches comme : P1 de K1, K2 de S2, S2 de T2, S3 de SP3 et SK3. Des observations d'un an et plus seront nécessaires;
- Y Les différences entre modèles et observations GPS ne sont pas négligeables;
- Y Dans tous les cas il existe un rapport entre période d'observation nécessaire pour la séparation d'ondes et amplitude d'onde en question ;
- L'ampleur d'impact des artefacts issues de l'absorption du signal (principalement en vertical) sur le paramètres troposphériques dépend aussi de l'amplitude de surcharge sur la station;
- Y Les impacts des artefacts sur les solutions issues des différents logiciels ne sont pas toujours les mêmes;
- Y La comparaison du modèle issue des traitements GPS doivent être complétées au niveau des phases pour chaque onde;
- Un modelé régional de surcharge océanique à partir de résultats GPS peut être utilisé pour contraindre une solution régionale d'un modèle quelconque et restituer les nombres de Love de déformation local!!! (utilisation des futures réseaux permanents denses = TERRIA)

S. A. Melachroinos, M. Vergnolle, M. Llubes, R. Biancale, F. Perosanz, J. Nicolas, L. Morel, S. Durand, F. Masson, M.-N. Bouin

